22 research outputs found

    Autism-associated gene shank3 is necessary for social contagion in zebrafish

    Get PDF
    BACKGROUND: Animal models enable targeting autism-associated genes, such as the shank3 gene, to assess their impact on behavioural phenotypes. However, this is often limited to simple behaviours relevant for social interaction. Social contagion is a complex phenotype forming the basis of human empathic behaviour and involves attention to the behaviour of others for recognizing and sharing their emotional or affective state. Thus, it is a form of social communication, which constitutes the most common developmental impairment across autism spectrum disorders (ASD). METHODS: Here we describe the development of a zebrafish model that identifies the neurocognitive mechanisms by which shank3 mutation drives deficits in social contagion. We used a CRISPR-Cas9 technique to generate mutations to the shank3a gene, a zebrafish paralogue found to present greater orthology and functional conservation relative to the human gene. Mutants were first compared to wild types during a two-phase protocol that involves the observation of two conflicting states, distress and neutral, and the later recall and discrimination of others when no longer presenting such differences. Then, the whole-brain expression of different neuroplasticity markers was compared between genotypes and their contribution to cluster-specific phenotypic variation was assessed. RESULTS: The shank3 mutation markedly reduced social contagion via deficits in attention contributing to difficulties in recognising affective states. Also, the mutation changed the expression of neuronal plasticity genes. However, only downregulated neuroligins clustered with shank3a expression under a combined synaptogenesis component that contributed specifically to variation in attention. LIMITATIONS: While zebrafish are extremely useful in identifying the role of shank3 mutations to composite social behaviour, they are unlikely to represent the full complexity of socio-cognitive and communication deficits presented by human ASD pathology. Moreover, zebrafish cannot represent the scaling up of these deficits to higher-order empathic and prosocial phenotypes seen in humans. CONCLUSIONS: We demonstrate a causal link between the zebrafish orthologue of an ASD-associated gene and the attentional control of affect recognition and consequent social contagion. This models autistic affect-communication pathology in zebrafish and reveals a genetic attention-deficit mechanism, addressing the ongoing debate for such mechanisms accounting for emotion recognition difficulties in autistic individuals

    Gephyrin Selective Intrabodies as a New Strategy for Studying Inhibitory Receptor Clustering

    Get PDF
    The microtubule-binding protein gephyrin is known to play a pivotal role in targeting and clustering postsynaptic inhibitory receptors. Here, the Intracellular Antibodies Capture Technology (IATC) was used to select two single-chain antibody fragments or intrabodies, which, fused to nuclear localization signals (NLS), were able to efficiently and selectively remove gephyrin from glycine receptor (GlyR) clusters. Co-transfection of NLS-tagged individual intrabodies with gephyrin-enhanced green fluorescent protein (EGFP) in HEK 293 cells revealed a partial relocalization of gephyrin aggregates onto the nucleus or in the perinuclear area. When expressed in cultured neurons, these intrabodies caused a significant reduction in the number of immunoreactive GlyR clusters, which was associated with a decrease in the peak amplitude of glycine-evoked whole cell currents as assessed with electrophysiological experiments. Hampering protein function at a posttranslational level may represent an attractive alternative for interfering with gephyrin function in a more spatially localized manner

    A genetically encoded reporter of synaptic activity in vivo

    Get PDF
    To image synaptic activity within neural circuits, we tethered the genetically encoded calcium indicator (GECI) GCaMP2 to synaptic vesicles by fusion to synaptophysin. The resulting reporter, SyGCaMP2, detected the electrical activity of neurons with two advantages over existing cytoplasmic GECIs: it identified the locations of synapses and had a linear response over a wider range of spike frequencies. Simulations and experimental measurements indicated that linearity arises because SyGCaMP2 samples the brief calcium transient passing through the presynaptic compartment close to voltage-sensitive calcium channels rather than changes in bulk calcium concentration. In vivo imaging in zebrafish demonstrated that SyGCaMP2 can assess electrical activity in conventional synapses of spiking neurons in the optic tectum and graded voltage signals transmitted by ribbon synapses of retinal bipolar cells. Localizing a GECI to synaptic terminals provides a strategy for monitoring activity across large groups of neurons at the level of individual synapses

    A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes.

    Get PDF
    Hundreds of human genes are associated with neurological diseases, but translation into tractable biological mechanisms is lagging. Larval zebrafish are an attractive model to investigate genetic contributions to neurological diseases. However, current CRISPR-Cas9 methods are difficult to apply to large genetic screens studying behavioural phenotypes. To facilitate rapid genetic screening, we developed a simple sequencing-free tool to validate gRNAs and a highly effective CRISPR-Cas9 method capable of converting >90% of injected embryos directly into F0 biallelic knockouts. We demonstrate that F0 knockouts reliably recapitulate complex mutant phenotypes, such as altered molecular rhythms of the circadian clock, escape responses to irritants, and multi-parameter day-night locomotor behaviours. The technique is sufficiently robust to knockout multiple genes in the same animal, for example to create the transparent triple knockout crystal fish for imaging. Our F0 knockout method cuts the experimental time from gene to behavioural phenotype in zebrafish from months to one week

    Tcf7l2 is required for left-right asymmetric differentiation of habenular neurons.

    Get PDF
    BACKGROUND: Although left-right asymmetries are common features of nervous systems, their developmental bases are largely unknown. In the zebrafish epithalamus, dorsal habenular neurons adopt medial (dHbm) and lateral (dHbl) subnuclear character at very different frequencies on the left and right sides. The left-sided parapineal promotes the elaboration of dHbl character in the left habenula, albeit by an unknown mechanism. Likewise, the genetic pathways acting within habenular neurons to control their asymmetric differentiated character are unknown. RESULTS: In a forward genetic screen for mutations that result in loss of habenular asymmetry, we identified two mutant alleles of tcf7l2, a gene that encodes a transcriptional regulator of Wnt signaling. In tcf7l2 mutants, most neurons on both sides differentiate with dHbl identity. Consequently, the habenulae develop symmetrically, with both sides adopting a pronounced leftward character. Tcf7l2 acts cell automously in nascent equipotential neurons, and on the right side, it promotes dHbm and suppresses dHbl differentiation. On the left, the parapineal prevents this Tcf7l2-dependent process, thereby promoting dHbl differentiation. CONCLUSIONS: Tcf7l2 is essential for lateralized fate selection by habenular neurons that can differentiate along two alternative pathways, thereby leading to major neural circuit asymmetries

    A Synaptic Mechanism for Temporal Filtering of Visual Signals

    Get PDF
    The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties

    Development of social behavior in young zebrafish

    No full text
    Adult zebrafish are robustly social animals whereas larvae are not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish show no social preference whereas most three week old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same one to three week period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behaviour in adult zebrafish

    In vivo evidence that retinal bipolar cells generate spikes modulated by light

    No full text
    Retinal bipolar cells have been assumed to generate purely graded responses to light. To test this idea we imaged the presynaptic calcium transient in live zebrafish. We found that ON, OFF, transient and sustained bipolar cells are all capable of generating fast 'all-or-none' calcium transients modulated by visual stimulation

    A model of vesicle release through the ribbon.

    No full text
    <p>(A) Schematic showing three vesicle pools involved in the exocytic response triggered by calcium. (B) The model (black) closely reproduces the three phases of release measured by <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001972#pbio.1001972-Burrone3" target="_blank">[45]</a> (grey) upon maximal activation of calcium channels. (C<sub>1</sub>) Bulk calcium and (D<sub>1</sub>) vesicle release modeled for OFF terminals with different radii (1.2, 1.6, 2.8 µm) when a light step is turned off. (C<sub>2</sub>) The initial rate of rise of the calcium signal (calcium gain) varies as 1/r, while release gain falls linearly with r (D<sub>2</sub>). (E<sub>1</sub>) Calcium in response to a 1 Hz square wave stimulus in different size terminals. (E<sub>2</sub>) Power at the stimulus frequency falls with 1/r (cf. <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001972#pbio-1001972-g001" target="_blank">Figure 1E<sub>2</sub></a>). See also <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001972#pbio.1001972.s004" target="_blank">Figure S4</a>. (E<sub>2</sub>) Inset: unlike the one-compartment model, the 3-D diffusion model (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001972#pbio.1001972.s003" target="_blank">Figure S3</a>) predicts a linear relation between power at the stimulus frequency and radius.</p
    corecore